organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Lars Eriksson^a* and Göran Widmalm^b

^aDivision of Structural Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden, and ^bDepartment of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden

Correspondence e-mail: lerik@struc.su.se

Key indicators

Single-crystal synchrotron study T = 110 KMean σ (C–C) = 0.002 Å R factor = 0.037 wR factor = 0.097 Data-to-parameter ratio = 15.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Amygdalin trihydrate

Extensive hydrogen bonding is present in the crystal structure of the title compound [systematic name: (*R*)-1-cyano-1-(phenylmethyl)- β -D-glucopyranosyl-(1 \rightarrow 6)- β -D-glucopyranoside], C₂₀H₂₇NO₁₁·3H₂O, involving all of the hydroxy groups. The water molecules are also involved in the hydrogen bonding; in particular, one of them acts as a bridge between the endocyclic O atoms of the two sugar residues. The overall conformation of the disaccharide is described by the *exo*anomeric conformations, $\varphi''_{\rm H} = 26^{\circ}$ and $\varphi'_{\rm H} = 38^{\circ}$, together with an antiperiplanar extended conformation of the constituent sugar residues, with $\psi'' = 155^{\circ}$.

Comment

Amygdalin is a cyanogenic glycoside found in the kernels of, for example, apples, almonds and peaches (Jones, 1998). More than 2500 plant species have been identified as containing cyanogenic compounds (Moller et al., 1999). The title compound is a diglycosyl glycoside from which cytotoxic hydrogen cyanide can be released, leading to acute cyanide poisoning. This (R)-1-cvano-1-(phenylmethyl)- β -Dglucopyranosyl- $(1\rightarrow 6)$ - β -D-glucopyranoside, (I), has been studied in solution by NMR spectroscopy (Ribeiro, 1990) and recently also in the solid state as a function of temperature (Widmalm et al., 2003). It was found that the phenyl ring exhibited thermally activated dynamics about the para axis, whereas the glucosyl residues remained static. We present here the crystal structure of amygdalin trihydrate, and analyze a number of important degrees of freedom with respect to its torsion angles and the possibility of forming a complex hydrogen-bonding network due to the presence of three ordered water molecules per amygdalin molecule.

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

 $_{\text{ography}}$ The conformation of an oligosaccharide is described by the torsion angles φ and ψ at the glycosidic linkage between the

Received 26 January 2005 Accepted 28 February 2005 Online 4 March 2005

Figure 1

Molecular structure of (I), showing 50% probability displacement ellipsoids. Hydrogen-bond contacts are shown as dashed lines.

constituent monosaccharides. The φ and ψ angles for the present compound are defined by φ'' (O5'-C1''-O6'-C6'), φ' (O5'-C1'-O7-C7), ψ'' (C1''-O6'-C6'-C5') and ψ' (C1'-O7-C7-C1). Selected torsion angles are shown in Table 1.

The additional major degree of freedom in a hexopyranosyl residue is the conformational preference of the hydroxymethyl group. In amygdalin this is described by the torsion angles ω'' (O5''-C5''-C6''-O6'') and ω' (O5'-C5'-C6'-O6'), the latter being part of the $(1\rightarrow 6)$ linkage. The two ω torsion angles both correspond to the gg conformation (Fig. 1), which is one of the two found to be significantly populated in solution. The two $\varphi_{\rm H}$ torsion angles are in the vicinity of the exo-anomeric conformation ($\varphi_{\rm H} \simeq 50^{\circ}$), as indicated by the torsion angles $\varphi''_{\rm H}$ (H1''-C1''-O6'-C6') and $\varphi'_{\rm H}$ (H1'-C1'-O7-C7) (Table 1). For the β -(1 \rightarrow 6) linkage the value of ψ'' leads to an extended antiperiplanar conformation, also found in solutions of similar compounds, on the basis of NMR spectroscopic and computer simulation studies (Lycknert *et al.*, 2004).

The torsion angle at the glycosidic linkage to the aglycone, ψ' , results in spatial proximity of atoms H1' and H7 and, in oligosaccharide terminology, a *syn* conformation. For the aglyconic part, the torsion angle χ (C2–C1–C7–O7) describes the orientation of the phenyl group. The latter is planar within less than 0.01 (1) Å, with atom C7 deviating by 0.023 (2) Å from the least-squares plane defined by the phenyl ring. The plane defined by atoms C1, C7 and C8 is inclined by 14.0 (2)° to the phenyl ring plane. Atom N1 is displaced by 0.060 (4) Å from the C1/C7/C8 plane.

The Cremer & Pople (1975) parameters for the two sugar rings are Q = 0.5915 (11) Å, $\theta = 3.85$ (11)° and $\varphi = 221.4$ (15)° for the O5" \rightarrow C5" direction, and Q = 0.5607 (10) Å, $\theta =$ 12.68 (10)° and $\varphi = 345.5$ (6)° for the O5' \rightarrow C5' direction. Both of the sugar residues have the anticipated chair conformation, *i.e.* ${}^{4}C_{1}$.

All hydroxy groups act as donors in intermolecular hydrogen bonds. The O3" hydroxy group is also involved in an intramolecular hydrogen bond to O4". All hydroxy groups, except O4', also act, at least once, as hydrogen-bond acceptors. Furthermore, atoms O4" and O2' are dual hydrogen-bond acceptors. The three water molecules (OW1, OW2 and OW3) act as dual hydrogen-bond donors. In fact, OW1 provides donor H atoms for three hydrogen bonds, viz. one simple and one bifurcated. Two of the water molecules are single acceptors and one (OW1) is a dual hydrogen-bond acceptor. Interestingly, OW1 mediates the intramolecular hydrogen bonding between O5' and O5". A view of the hydrogen-bond pattern around the three water molecules is shown in Fig. 1. In addition, atom N1 is an acceptor in the hydrogen-bond pattern. The sugar residues pack in the ab plane and the phenyl rings are involved in π - π interactions via a T-shaped edge-to-face arrangement (Meyer et al., 2003). The angle between the least-squares planes of the phenyl rings at (x, y, z)and $(2 - x, \frac{1}{2} + y, 2 - z)$ is 77.02 (4)°. The distance between the centers of gravity of these rings is 4.930 (1) Å, comparable to that in the crystal structure of edge-to-face oriented benzene (5.025 Å). A diagram of the packing, viewed along the a axis, is shown in Fig. 2. $C - H \cdot \cdot \pi$ interactions are present (Table 2), similar to the aromatic interaction described above. Although weak, the C-H $\cdots \pi$ interactions play important structurestabilizing roles, in particular for carbohydrate-protein complexes.

Experimental

Amygdalin [or (*R*)-1-cyano-1-(phenylmethyl)- β -D-glucopyranosyl-(1 \rightarrow 6)- β -D-glucopyranoside] was obtained from C. A. F. Kahlbaum GmbH, Berlin, Germany. The compound was crystallized by slow evaporation of a mixture of water, ethanol and acetonitrile (1:1:1) at ambient temperature, yielding needles which were mounted with epoxy glue on to glass fibres. The scattering power of the crystals was weak; thus it was decided to collect data with synchrotron radiation at beamline I711 at the Swedish synchrotron radiation facility MAXLAB, Lund, Sweden.

Crystal	data
---------	------

$C_{20}H_{33}NO_{14}$	Synchrotron radiation
$M_r = 511.47$	$\lambda = 0.891 \text{ Å}$
Monoclinic, P2 ₁	Cell parameters from 999
a = 9.4794 (11) Å	reflections
b = 7.9025(9)Å	$\theta = 3.0-29.0^{\circ}$
c = 16.2016 (19) Å	$\mu = 0.12 \text{ mm}^{-1}$
$\beta = 94.089(3)^{\circ}$	T = 110 (2) K
V = 1210.6 (2) Å ³	Plate, colorless
Z = 2	$0.20 \times 0.10 \times 0.02 \text{ mm}$
$D_x = 1.403 \text{ Mg m}^{-3}$	
Data collection	
Bruker SMART 1K area-detector	5454 independent reflections
diffractometer	5010 reflections with $I > 2\sigma(I)$
ω scans at different φ and 2θ	$R_{\rm int} = 0.031$
Absorption correction: multi-scan	$\theta_{\rm max} = 45.9^{\circ}$
$(\mathbf{F} \mathbf{A} \mathbf{D} \mathbf{A} \mathbf{D} \mathbf{F}_{1} $	1 15 14

(SADABS; Sheldrick, 2002) $T_{min} = 0.98, T_{max} = 1.00$ 20604 measured reflections

 $k = -10 \rightarrow 12$ $l = -16 \rightarrow 25$

organic papers

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.097$ S = 1.045454 reflections 343 parameters H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0714P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.50 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.55 \text{ e} \text{ Å}^{-3}$ Extinction correction: *SHELXL97* Extinction coefficient: 0.051 (3)

Table 1

Selected torsion angles (°).

C2-C1-C7-O7	69.87 (16)	C6'-O6'-C1''-O5''	-94.69 (11)
C1-C7-O7-C1'	-145.08(11)	O5''-C5''-C6''-O6''	-61.27 (13)
O7-C7-C8-N1	172 (3)	H1″-C1″-O6′-C6′	25.7
C7-O7-C1'-O5'	-83.22(12)	H1′-C1′-O7-C7	37.8
O5'-C5'-C6'-O6'	-74.07(12)	C1′-O7-C7-H7	-28.1
C5'-C6'-O6'-C1''	154.93 (10)		

Table 2

Hydrogen-bond geometry (Å, $^\circ).$

Cg is the centroid of the phenyl ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O2' - H2X \cdots O2''^i$	0.84	1.88	2.701 (1)	166
$O3' - H3X \cdot \cdot \cdot OW1$	0.84	2.02	2.813 (2)	157
$O4' - H4X \cdot \cdot \cdot O3'^{ii}$	0.84	2.00	2.817 (1)	164
$O2'' - H2Y \cdot \cdot \cdot O3''^{iii}$	0.84	1.85	2.690(1)	175
$O3'' - H3Y \cdot \cdot \cdot O4''$	0.84	2.40	2.835 (1)	113
$O3'' - H3Y \cdot \cdot \cdot O2'^{iv}$	0.84	2.51	3.346 (1)	176
$O4'' - H4Y \cdot \cdot \cdot O2'^{iv}$	0.84	1.99	2.823 (1)	174
$O6'' - H62C \cdot \cdot \cdot OW3^v$	0.84	1.96	2.774 (1)	162
$OW1-H1W1\cdots O5'^{ii}$	0.82(2)	2.14 (2)	2.958 (2)	173 (2)
$OW1 - H2W1 \cdots O5''^{ii}$	0.84 (2)	2.26 (2)	2.904 (1)	133 (2)
$OW1 - H2W1 \cdot \cdot \cdot O6^{\prime\prime ii}$	0.84 (2)	2.36 (2)	3.126 (2)	151 (2)
$OW2-H1W2\cdots OW1$	0.81 (3)	2.07 (3)	2.864 (2)	165 (3)
$OW2-H2W2\cdots O4''^{iii}$	0.82 (2)	2.04 (2)	2.860 (2)	174 (2)
OW3−H1W3···OW2	0.83 (2)	1.95 (2)	2.760 (2)	164 (2)
OW3−H2W3···N1 ^{vi}	0.83 (2)	2.28 (2)	3.094 (2)	167 (2)
$C5-H5\cdots Cg^{vii}$	0.95	2.71	3.590 (2)	155
$C5'' - H5'' \cdots Cg^{viii}$	1.00	2.83	3.640 (2)	138

Symmetry codes: (i) x + 1, y, z; (ii) $-x + 1, y + \frac{1}{2}, -z + 1$; (iii) $-x, y + \frac{1}{2}, -z + 1$; (iv) x - 1, y - 1, z; (v) $-x + 1, y - \frac{1}{2}, -z + 1$; (vi) x, y, z - 1; (vii) $-x - 3, y - \frac{1}{2}, -z + 2$; (viii) x - 1, y, z.

H atoms were positioned geometrically and allowed to ride on their parent atoms, with CH, CH₂ and aromatic C–H bonds set equal to 1.00, 0.99 and 0.95 Å, respectively, and $U_{iso}(H) = 1.2U_{eq}(C)$ and $1.5U_{eq}(O)$. A 'rigid-bond' restraint was applied to U^{ij} values (Rollett, 1970). The Flack (1983) parameter was inconclusive, but the absolute configuration was set by the *a priori* knowledge that the sample is a known natural product. In the absence of significant anomalous scattering effects, the 5001 Friedel pairs were merged.

Packing view along the a axis, showing the contents of slightly more than four unit cells.

Data collection: *SMART* (Siemens, 1998); cell refinement: *SMART*; data reduction: *SAINT* (Siemens, 1998); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *DIAMOND* (Bergerhoff, 1996); software used to prepare material for publication: *PLATON* (Spek, 2003).

This work was supported by a grant from the Swedish Research Council (VR).

References

- Bergerhoff, G. (1996). *DIAMOND*. Gerhard-Domagk-Straße 1, 53121 Bonn, Germany.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Jones, D. A. (1998). Phytochemistry, 47, 155-162.
- Lycknert, K., Edblad, M., Imberty, A. & Widmalm, G. (2004). *Biochemistry*, **43**, 9647–9654.
- Meyer, E. A., Catellano, R. K. & Diederich, F. (2003). Angew. Chem. Int. Ed. 42, 1210–1250.
- Moller, B. L. & Siegler, D. S. (1999). Plant Amino Acids: Biochemistry and Biotechnology, edited by B. K. Singh, pp. 563–609. New York: Marcel Dekker Inc.
- Ribeiro, A. A. (1990). Magn. Reson. Chem. 28, 765-773.
- Rollett, J. S. (1970). *Crystallographic Computing*, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 167–181. Copenhagen: Munksgaard.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (2002). SADABS. Version 2.03. University of Göttingen, Germany.
- Siemens (1998). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Widmalm, G., Jansson, K., Pellijeff, G. & Sanström, D. (2003). J. Phys. Chem. B, 107, 11794–11798.